
A Computer Architecture Educational System

Dimitris Mandalidis, Panagiotis Kenterlis, Panagiotis Drosinopoulos, John N. Ellinas
Dept. of Electronic Computer Systems, Technological Educational Institute of Piraeus, 122 44

Egaleo, Greece
E-mail: {D.Mandalidis, P.Kenterlis, pdros, J.Ellinas}@mprolab.teipir.gr

Abstract

This paper describes the implementation of a system-on-a-programmable-chip (SOPC)
development board to support computer architecture laboratories at a low cost. A commercial field-
programmable-gate-array (FPGA) was employed to develop our reduced-instruction-set-computer
(RISC) soft processor core that may be programmed through a user-friendly environment
accompanied by an assembler. Our approach aims to support a wide variety of student projects in
our engineering curriculum, increase students productivity and decrease the development time.
Through our implementation, students are introduced to RISC architecture concepts, SOPC design
and structure of assemblers. The reusability of the hardware permits the materialization of future
projects according to our educational needs. The proposed inexpensive solution is a complete
educational environment suitable for undergraduate use.

1. Introduction

The undergraduate curriculum of our department consists of two courses in computer
architecture, familiarizing students more familiar to microprocessor notions and operations,
memory and port interfacing, interrupt logic, direct-memory-access (DMA) operation,
assembly language programming, computer arithmetic and computer hardware and
software in general. The first course is introductory to computer architecture involving
assembly language programming of 8-bit microprocessors. The second course involves
programming more high-end microprocessors like the Intel’s 80X86 family. The laboratory
courses are based on special purpose software simulators to aid in modeling the targeted
microprocessor. Of course, a number of other courses like logic design and microelectronics
assist students to integrate their knowledge in this field. Our intention is to make the systems
hardware and software more appealing to students by creating meaningful real time
laboratory applications. Field programmable devices contribute to this objective considerably
as they are flexible and of low cost. Nowadays, FPGA designs are becoming increasingly
popular due to their maintainability, their flexibility and their cost. Designers are able to re-
program and reuse the same FPGA for many applications, while the embedded nature of a
FPGA enables designers to implement large applications which otherwise would require
large portions of discrete integrated circuits. Furthermore, the time between the conception
of an idea and its implementation is decreased dramatically. On the other hand, application-
specific-integratedcircuit (ASIC) design is generally faster, but its permanent nature is a
significant drawback for student designs which require frequent changes. Taking advantage
of the flexibility that a FPGA provides, several FPGA vendors have implemented processor

cores in such devices [1]; complete processors which support a wide variety of applications.
That approach influenced universities which until now designed or used existing processor
cores to support laboratories of their engineering curriculums. [2] Our approach involves
designing a processor core based on the MIPS R2000, a 32-bit RISC processor which was
originally introduced in 1984 by professor John Hennesy. We modified the original MIPS
R2000 architecture [3] to adapt it to our needs and embedded several peripheral functions to
enable students monitor their projects. Thus, together with our implemented assembler a
complete development environment is formed, ideal for undergraduate students in computer
architecture laboratories. In this paper, we will overview the commercial processor cores and
the software tools for the development of SOPC applications, the proposed system based
on a 32-bit RISC processor and how this system is adapted to our curriculum.

2. Overview

2.1. Hardware of SOPC

Nowadays, FPGA devices are no longer used only for prototyping and debugging purposes,
but can also be found in commercial applications due to the low development cost, high
level of logic available and their flexible in-system reprogramming capability. Therefore,
many popular FPGA vendors have introduced commercial microprocessors which may be
used in various designs. Such processors can be ranked in two categories; hard and soft
processor cores. Hard processor cores involve a combination of an embedded processor
core in dedicated silicon and FPGA logic, while soft processor cores are designed using
FPGA logic elements exclusively. Both approaches have advantages and disadvantages
some of which are presented in Table I. Notably, Altera [4] and Xilinx [5] have developed
both hard and soft

 Feature Hard cores Soft cores
Performance + -
Cost - +
Flexibility - +
Power
consumption + -

Table 1. Pros and cons of processor cores

processor cores to support designers implementations. Altera is marketting a hard processor
core, named Excalibur [6], in its APEX FPGA family [7]. Excalibur is a 32-bit RISC processor
core based on ARM architecture providing clock frequencies up to 200MHz, an external
memory bus and various I/O capabilities. In the field of soft processor cores, Altera Nios II
[8] is a 32-bit RISC soft processor core providing clock frequencies around 150MHz
depending on the FPGA product.
On the other hand, Xilinx supplies hard processor cores [9] based on IBM PowerPC
architecture providing 32-bit RISC cores embedded in VirtexII-Pro and Virtex4-FX FPGA
families that run at frequencies up to 450MHz. Furthermore, Xilinx is marketting Microblaze
[10], a 32-bit RISC soft processor core, capable of running at frequencies around 150MHz.
Moreover, the above mentioned vendors as well as third-party companies offer development
boards to implement a wide variety of design applications. Such boards are usually shipped

with a FPGA for general purpose use or with ready processor cores which can be modified
according to the developer’s needs. These boards also offer various monitoring and
communication facilities such as liquid-crystal-display (LCD), light-emitting-diodes (LEDs),
switches, USB, EIA-232 and joint-test-action-group (JTAG) interfaces. Our application was
developed in a Memec [11] board which is shown in Figure 1.

2.2. Software tools

The development of a SOPC is achieved by employing specific software tools that may
configure processor hardware options for each soft processor core. The design is integrated
by combining the system logic needed with the processor core using a standard FPGA
synthesis computer-aided-design (CAD) tool.
Vendors also offer fully functional CAD tools. Altera Quartus II [12] and Xilinx ISE [13] are
tools intended for general use. In addition to this, Altera SOPC Builder [14] and Xilinx
Embedded Development Kit (EDK) [15] help developpers design and evaluate embedded
system solutions. Such tools, in conjuction with powerful simulation environment, like Mentor
Graphics ModelSim [16], offer FPGA designers the opportunity to exploit FPGA technology
capabilities over ASIC by building fully operational systems at no time.

Figure. 1. Memec DS-KIT-3SLC400 development board

3. The Proposer 32-BIT RISC Processor

3.1. Processor core development

The proposed system was implemented on a Xilinx xc3s400 FPGA [17], a 400,000-gate
member of the Spartan 3 family, shipped with Memec’s DS-KIT-3SLC400 development
board [18] as shown in Fig. 1. The board is offering EIA-232 and USB interfaces, JTAG and
Platform Flash configuration support, System ACE connector and 109 user I/O pins which
can be manipulated through an optional P160 expansion module. It also contains on-board
a clock oscillator, a user clock socket, and voltage regulators at 3.3V, 2.5V and 1.2V. The
software tools employed were VHDL under Xilinx ISE 6.2 environment and ModelSim 5.7g
simulator in order to achieve the desired functionality for the resulting application.

3.2. Processor core assembler

An assembler to support our application was also developed under the Linux operating
system due to the batch and remote facilities that the latter offers. In this case, the GNU
Assembler (GAS) [19] could be modified to suit our needs. However, its difficult installation
as a cross-assembler coupled with the fact that an extra level of indirection would be needed
(due to the OS-specific symbols) led us to develop our own assembler. Consequently, our
assembler was written in C from scratch using the GNU Compiler Collection (GCC) [19] and
the GNU Debugger (GDB) [20]. Finally, it is not architectural dependent and its performance
was tested under Solaris and PPC architectures.

3.3. The proposed system

1) Internal architecture: The implemented processor core contains various modifications on
the original MIPS R2000 processor. More precisely, our core provides a solution to the
memory alignment problem of the MIPS R2000, offers an interrupt controller and extra I/O
capabilities. Furthermore, it lacks a floating point unit and pipelining as these concepts were
considered of minor importance with respect to our curriculum. As far as performance is
concerned, the resulting processor runs at frequencies up to 63MHz and the total estimated
power consumption is 125mW. The xc3s400 utilization is shown in Table II where the space
availability for further improvements and add-ons is indicated.

2) Memory and I/O: The most important modification concerning memory architecture was
the switching from Harvard to von Neumann architecture; contrary to Harvard architecture,
von Neumann’s devotes common signals and units for code or data memory access. This
modification enabled the reuse of the universal-asynchronous-receiver-transmitter (UART)
controller for both student programs and run-time programming of the processor core. The
FPGA internal block RAM of 16KB proved sufficient for our needs

Part Total amount Amount used Usage (%)
Slices 3584 1853 51

Slice Flip-
Flops

7168 1041 14

4 input LUTs 7168 3140 43
Bonded IOBs 141 47 33
BRAMs 16 10 62
MULT18X18s 16 4 25
GCLKS 8 1 12

Table 2. FPGA Utilization

and finally a 512x32 portion of the FPGA internal ROM memory was used for firmware
purposes. A wait state is introduced through a data-multiplexing-demultiplexing (DMD) unit
to avoid access to out of bounds memory address. Thus, the alignment problem is solved as
shown in Fig. 2 and 3 where a word write at address 0x00000005 is being attempted. A
memory-mapped I/O unit was also implemented to take

Figure. 2. Initial access cycle

Figure. 3. Alignment correction cycle

advantage of our embedded peripherals as well as the development board facilities. It
consists of a 32-bit timer, a UART controller running at 14400bps, and two 8-bit bidirectional
I/O ports that may drive external devices such as LCD, keyboards, LED, DIP switches, 7-
segment displays. Some of these peripheral devices are provided by the development
board.

3) Interrupt-driven system: An embedded interrupt controller was also implemented to take
full advantage of the I/O functionality instead of supplying an external interrupt device. The
mps command was added to the original instruction set to support read or write operations
of interrupt registers. The most important interrupt registers are the mask and vector-page
registers. The first is used to enable or disable interrupts and the second specifies the
address of an interrupt service routine. Furthermore, the interrupt logic serves byte
transmission or reception through the UART controller, timer overflow and arithmetic-logic-
unit (ALU) overflow. The interrupt controller consists of an internal stack which is capable of
holding sixteen return addresses and processor status and therefore servicing sixteen
nested interrupts, the four of which are internal requests while the others are external. Apart
from the basic interrupt control registers there are also supplementary registers shown in
Table III.

 Interrupt register Access method
Masked flags Read
Unmasked flags Read
Mask Read/Write
Vector address Read
Vector page Write
Return address Read

Table 3. Interrupt registers

4) Timer module: The implemented timer module consists of an incremental 32-bit counter
which provides up to 1:8 prescaling through a 4-to-1 multiplexer. A multiple-frequency
divider is used as input to the prescaler that provides various timing periods according to the
values of the respective controlling bits. The functionality of the timer is controlled by two
registers. One of them holds the time constant and the other controls other options. The
timer may provide delays of up to 45 minutes using a 50MHz clock.

5) UART module: Our UART controller provides an asynchronous full-duplex
communications path with a variety of data-terminal-equipment (DTE) or data-connecting-
equipment (DCE) devices. It runs at 14400bps and its data frame consists of one start-bit,
eight data bits, one stop bit and without parity functionality (8N1). A double buffer is also
implemented to prevent bytes overlapping in transmission process. Its functionality is
controlled by three registers; two for transmitting or receiving data and one for enabling or
disabling the transmission or the reception.

6) Assembler: The assembler developed for our application is a two pass assembler which
provides the user with listing information (see Table IV) along with a HEX file used to load
the executable program. During the first pass, the assembler tracks down labels with their
respective data or address, and afterwards, this performs the second pass using that
information. It is also batch-capable allowing performance of other tasks while running in the
background. It should also be noted that it is released under the GNU General Public
Licence (GPL) [21].

Memory address Object code Command
0x00000400 0x34014000 ori $01, $0, 0x4000
0x00000404 0x0c000116 jal 0x116
0x00000408 0x34030038 ori $03, $0, 0x38
0x0000040c 0xa0230004 sb $03, 0x4($01)
0x00000410 0x08000104 j 0x104
0x00000444 0x8024000c lb $04, 0xc($01)
0x00000448 0xa0240010 sb $04, 0x10($01)
0x0000044c 0xa0240008 sb $04, 0x8($01)
0x00000450 0x0c000116 jal 0x116
0x00000454 0xd4000000 reti
0x00000458 0x3c020001 lui $02, 0x1
0x0000045c 0x34420002 ori $02, $02, 0x2
0x00000460 0xd0021803 mps $03, $0, $02, 3
0x00000464 0x34020444 ori $02, $0, 0x444
0x00000468 0xd0021805 mps $03, $0, $02, 5
0x0000046c 0x03e00008 jr $ra

Table 4. Assembler listing

7) Supplementary commands: A few extra commands were added to the original MIPS
R2000 instruction set; apart from mps which is used for interrupt control, reti command was
added to support return from an interrupt service routine, push, pushd, pop and popd were
added to implement stack support.

4. Proposed SOPC In The Undergraduate Curriculum

The students of a computer architecture laboratory are provided with a bootable Linux CD.
The CD includes an executable binary file of the assembler as well as extensive
documentation of the development roadmap of the system. Then the user could use the
assembler to save his work in a USB stick. Several laboratory exercises have been
developped such as interfacing of LCD displays, 4x4 keyboard matrices and real-time-clock
(RTC) chips. Our laboratory is currently developing more advanced exercises such as
driving of dc and stepper motors, interfacing of various sensors (temperature, humidity,
pressure, weighing, gas etc).
The students attending the computer architecture laboratory are going through a number of
exercises that train them in a variety of issues concerning the FPGA implementation of a
RISC processor, its architecture, peripherals, programming, functionality and interfacing.
The enthusiasm of the students attending this course motivates our team to enhance the
present work. Among others, extended UART capabilities could be implemented such as
programmable baud rate, synchronous communication, parity and data width control. Timer
facilities could also be extended to support pulse-width-modulation (PWM) and another timer
could be implemented to extend maximum delay. Moreover, an external memory interface
could be added to enable the design of memory-consuming projects like digital-signal-
processing (DSP) applications. As far as the software part is concerned, assembler macro
commands could be introduced and a C compiler could be implemented. Fortunately, due to
the rapid evolution of FPGA technology, a more advanced development board along with a
larger FPGA could help us implement almost everything imaginable.

5. Conclusion

This paper describes the hardware and software implementation of an educational system
based on a RISC soft processor core that will support the computer architecture laboratory
of our department. Overall, the approach of using FPGA for the support of our computer
architecture laboratory proved to be cost-effective; the complexity of assigned essays was
increased while the cost of the equipment was greatly decreased. Through inexpensive
equipment we found out that the support of a whole laboratory was possible. Furthermore,
the time needed for students to finish a report has decreased, and the opportunity for the
students to extend the functionality of the system could also be provided through a
dissertation. Finally, we found that our students enjoyed our approach and managed to
better accomplish the objectives of a computer architecture laboratory.

REFERENCES

[1] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness of fpga soft processor cores using

dynamic hardware/software partitioning,” Design, Automation and Test in Europe (DATE’05), vol. 1, pp. 18–23,
2005.

[2] T. S. Hall and J. O. Hamblen, “System-on-a-programmable-chip development platforms in the classroom,” IEEE
Trans. Educ., vol. 47, no. 4, pp. 502–507, Nov. 2004.

[3] G. Kane and J. Heinrich, MIPS RISC Architecture, 2nd ed. Prentice Hall PTR, 1991.
[4] Altera corp. [Online]. Available: http://www.altera.com
[5] Xilinx inc. [Online]. Available: http://www.xilinx.com
[6] Excalibur Devices Overview. [Online]. Available: http://www.altera.com/products/devices/arm/overview/arm-

overview.html
[7] APEX 20K Devices: System-on-a-Programmable-Chip Solutions. [Online]. Available:

http://www.altera.com/products/devices/apex/ apx-index.html
[8] Nios II Processor Cores. [Online]. Available: http://www.altera.com/products/ip/processors/nios2/cores/ni2-processor

%cores.html
[9] PowerPC 405 Processor. [Online]. Available: http://www.xilinx.com/products/silicon solutions/fpgas/virtex/virtex ii% pro

fpgas/ capabilities/powerpc.htm
[10] Microblaze Soft Processor Core. [Online]. Available: http://www.xilinx.com/xlnx/xebiz/designResources/ip product

details.jsp% ?sGlobalNavPick=&sSecondaryNavPick=&category=-1212028&iLanguageID=1&key=micro %blaze
[11] Memec. [Online]. Available: http://www.memec.com
[12] Quartus II Software. [Online]. Available: http://www.altera.com/products/software/products/quartus2/qts-index.htm%l
[13] Xilinx ISE Foundation. [Online]. Available: http://www.xilinx.com/ise/logic design prod/foundation.htm
[14] SOPC Builder. [Online]. Available: http://www.altera.com/products/software/products/sopc/sop-index.html
[15] Platform Studio and the EDK. [Online]. Available: http://www.xilinx.com/ise/embedded design prod/platform studio.htm
[16] Modelsim SE. [Online]. Available: http://www.xilinx.com/ise/embedded design prod/platform studio.htm
[17] xc3s400 FPGA datasheet. [Online]. Available: http://www.xilinx.com/bvdocs/publications/ds099.pdf
[18] Memec Design Spartan-3 LC Development Kit. [Online]. Available: http://www.memec.com/uploaded/Spartan3LC 4.pdf
[19] GCC. [Online]. Available: http://www.gnu.org/software/gcc/
[20] GDB. [Online]. Available: http://www.gnu.org/software/gdb/
[21] GNU General Public Licence. [Online]. Available: http://www.gnu.org/licenses/gpl.html

	1. Introduction
	2. Overview
	2.1. Hardware of SOPC
	2.2. Software tools

	3. The Proposer 32-BIT RISC Processor
	3.1. Processor core development
	3.2. Processor core assembler

	4. Proposed SOPC In The Undergraduate Curriculum
	5. Conclusion
	REFERENCES

