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Abstract  

This paper describes the implementation of a system-on-a-programmable-chip (SOPC) 
development board to support computer architecture laboratories at a low cost. A commercial field-
programmable-gate-array (FPGA) was employed to develop our reduced-instruction-set-computer 
(RISC) soft processor core that may be programmed through a user-friendly environment 
accompanied by an assembler. Our approach aims to support a wide variety of student projects in 
our engineering curriculum, increase students productivity and decrease the development time. 
Through our implementation, students are introduced to RISC architecture concepts, SOPC design 
and structure of assemblers. The reusability of the hardware permits the materialization of future 
projects according to our educational needs. The proposed inexpensive solution is a complete 
educational environment suitable for undergraduate use.  

1. Introduction 
 

The undergraduate curriculum of our department consists of two courses in computer 
architecture, familiarizing students more familiar to microprocessor notions and operations, 
memory and port interfacing, interrupt logic, direct-memory-access (DMA) operation, 
assembly language programming, computer arithmetic and computer hardware and 
software in general. The first course is introductory to computer architecture involving 
assembly language programming of 8-bit microprocessors. The second course involves 
programming more high-end microprocessors like the Intel’s 80X86 family. The laboratory 
courses are based on special purpose software simulators to aid in modeling the targeted 
microprocessor. Of course, a number of other courses like logic design and microelectronics 
assist students to integrate their knowledge in this field. Our intention is to make the systems 
hardware and software more appealing to students by creating meaningful real time 
laboratory applications. Field programmable devices contribute to this objective considerably 
as they are flexible and of low cost. Nowadays, FPGA designs are becoming increasingly 
popular due to their maintainability, their flexibility and their cost. Designers are able to re-
program and reuse the same FPGA for many applications, while the embedded nature of a 
FPGA enables designers to implement large applications which otherwise would require 
large portions of discrete integrated circuits. Furthermore, the time between the conception 
of an idea and its implementation is decreased dramatically. On the other hand, application-
specific-integratedcircuit (ASIC) design is generally faster, but its permanent nature is a 
significant drawback for student designs which require frequent changes. Taking advantage 
of the flexibility that a FPGA provides, several FPGA vendors have implemented processor 



cores in such devices [1]; complete processors which support a wide variety of applications. 
That approach influenced universities which until now designed or used existing processor 
cores to support laboratories of their engineering curriculums. [2] Our approach involves 
designing a processor core based on the MIPS R2000, a 32-bit RISC processor which was 
originally introduced in 1984 by professor John Hennesy. We modified the original MIPS 
R2000 architecture [3] to adapt it to our needs and embedded several peripheral functions to 
enable students monitor their projects. Thus, together with our implemented assembler a 
complete development environment is formed, ideal for undergraduate students in computer 
architecture laboratories. In this paper, we will overview the commercial processor cores and 
the software tools for the development of SOPC applications, the proposed system based 
on a 32-bit RISC processor and how this system is adapted to our curriculum.  

2. Overview 

2.1.     Hardware of SOPC 
 

Nowadays, FPGA devices are no longer used only for prototyping and debugging purposes, 
but can also be found in commercial applications due to the low development cost, high 
level of logic available and their flexible in-system reprogramming capability. Therefore, 
many popular FPGA vendors have introduced commercial microprocessors which may be 
used in various designs. Such processors can be ranked in two categories; hard and soft 
processor cores. Hard processor cores involve a combination of an embedded processor 
core in dedicated silicon and FPGA logic, while soft processor cores are designed using 
FPGA logic elements exclusively. Both approaches have advantages and disadvantages 
some of which are presented in Table I. Notably, Altera [4] and Xilinx [5] have developed 
both hard and soft  

 Feature  Hard cores Soft cores  
Performance +  - 
Cost  - +  
Flexibility  - +  
Power 
consumption +  - 

 
 
 
 
 

 

 

Table 1. Pros and cons of processor cores 
 

processor cores to support designers implementations. Altera is marketting a hard processor 
core, named Excalibur [6], in its APEX FPGA family [7]. Excalibur is a 32-bit RISC processor 
core based on ARM architecture providing clock frequencies up to 200MHz, an external 
memory bus and various I/O capabilities. In the field of soft processor cores, Altera Nios II 
[8] is a 32-bit RISC soft processor core providing clock frequencies around 150MHz 
depending on the FPGA product.  
On the other hand, Xilinx supplies hard processor cores [9] based on IBM PowerPC 
architecture providing 32-bit RISC cores embedded in VirtexII-Pro and Virtex4-FX FPGA 
families that run at frequencies up to 450MHz. Furthermore, Xilinx is marketting Microblaze 
[10], a 32-bit RISC soft processor core, capable of running at frequencies around 150MHz.  
Moreover, the above mentioned vendors as well as third-party companies offer development 
boards to implement a wide variety of design applications. Such boards are usually shipped 



with a FPGA for general purpose use or with ready processor cores which can be modified 
according to the developer’s needs. These boards also offer various monitoring and 
communication facilities such as liquid-crystal-display (LCD), light-emitting-diodes (LEDs), 
switches, USB, EIA-232 and joint-test-action-group (JTAG) interfaces. Our application was 
developed in a Memec [11] board which is shown in Figure 1.  

2.2.     Software tools  
 
The development of a SOPC is achieved by employing specific software tools that may 
configure processor hardware options for each soft processor core. The design is integrated 
by combining the system logic needed with the processor core using a standard FPGA 
synthesis computer-aided-design (CAD) tool.  
Vendors also offer fully functional CAD tools. Altera Quartus II [12] and Xilinx ISE [13] are 
tools intended for general use. In addition to this, Altera SOPC Builder [14] and Xilinx 
Embedded Development Kit (EDK) [15] help developpers design and evaluate embedded 
system solutions. Such tools, in conjuction with powerful simulation environment, like Mentor 
Graphics ModelSim [16], offer FPGA designers the opportunity to exploit FPGA technology 
capabilities over ASIC by building fully operational systems at no time.  

 

 

Figure. 1. Memec DS-KIT-3SLC400 development board 

3. The Proposer 32-BIT RISC Processor  

3.1.     Processor core development  
 

The proposed system was implemented on a Xilinx xc3s400 FPGA [17], a 400,000-gate 
member of the Spartan 3 family, shipped with Memec’s DS-KIT-3SLC400 development 
board [18] as shown in Fig. 1. The board is offering EIA-232 and USB interfaces, JTAG and 
Platform Flash configuration support, System ACE connector and 109 user I/O pins which 
can be manipulated through an optional P160 expansion module. It also contains on-board 
a clock oscillator, a user clock socket, and voltage regulators at 3.3V, 2.5V and 1.2V. The 
software tools employed were VHDL under Xilinx ISE 6.2 environment and ModelSim 5.7g 
simulator in order to achieve the desired functionality for the resulting application.  



3.2. Processor core assembler  
 

An assembler to support our application was also developed under the Linux operating 
system due to the batch and remote facilities that the latter offers. In this case, the GNU 
Assembler (GAS) [19] could be modified to suit our needs. However, its difficult installation 
as a cross-assembler coupled with the fact that an extra level of indirection would be needed 
(due to the OS-specific symbols) led us to develop our own assembler. Consequently, our 
assembler was written in C from scratch using the GNU Compiler Collection (GCC) [19] and 
the GNU Debugger (GDB) [20]. Finally, it is not architectural dependent and its performance 
was tested under Solaris and PPC architectures.  

3.3. The proposed system 
  

1) Internal architecture: The implemented processor core contains various modifications on 
the original MIPS R2000 processor. More precisely, our core provides a solution to the 
memory alignment problem of the MIPS R2000, offers an interrupt controller and extra I/O 
capabilities. Furthermore, it lacks a floating point unit and pipelining as these concepts were 
considered of minor importance with respect to our curriculum. As far as performance is 
concerned, the resulting processor runs at frequencies up to 63MHz and the total estimated 
power consumption is 125mW. The xc3s400 utilization is shown in Table II where the space 
availability for further improvements and add-ons is indicated.  

2) Memory and I/O: The most important modification concerning memory architecture was 
the switching from Harvard to von Neumann architecture; contrary to Harvard architecture, 
von Neumann’s devotes common signals and units for code or data memory access. This 
modification enabled the reuse of the universal-asynchronous-receiver-transmitter (UART) 
controller for both student programs and run-time programming of the processor core. The 
FPGA internal block RAM of 16KB proved sufficient for our needs 

Part Total amount Amount used Usage (%) 
Slices 3584 1853 51 

Slice Flip-
Flops 

7168 1041 14 

4 input LUTs 7168 3140 43 
Bonded IOBs 141 47 33 
BRAMs 16 10 62 
MULT18X18s 16 4 25 
GCLKS 8 1 12 

Table 2. FPGA Utilization 

 
and finally a 512x32 portion of the FPGA internal ROM memory was used for firmware 
purposes. A wait state is introduced through a data-multiplexing-demultiplexing (DMD) unit 
to avoid access to out of bounds memory address. Thus, the alignment problem is solved as 
shown in Fig. 2 and 3 where a word write at address 0x00000005 is being attempted. A 
memory-mapped I/O unit was also implemented to take  



 

Figure. 2. Initial access cycle  

 

Figure. 3. Alignment correction cycle 

advantage of our embedded peripherals as well as the development board facilities. It 
consists of a 32-bit timer, a UART controller running at 14400bps, and two 8-bit bidirectional 
I/O ports that may drive external devices such as LCD, keyboards, LED, DIP switches, 7-
segment displays. Some of these peripheral devices are provided by the development 
board.  

3) Interrupt-driven system: An embedded interrupt controller was also implemented to take 
full advantage of the I/O functionality instead of supplying an external interrupt device. The 
mps command was added to the original instruction set to support read or write operations 
of interrupt registers. The most important interrupt registers are the mask and vector-page 
registers. The first is used to enable or disable interrupts and the second specifies the 
address of an interrupt service routine. Furthermore, the interrupt logic serves byte 
transmission or reception through the UART controller, timer overflow and arithmetic-logic-
unit (ALU) overflow. The interrupt controller consists of an internal stack which is capable of 
holding sixteen return addresses and processor status and therefore servicing sixteen 
nested interrupts, the four of which are internal requests while the others are external. Apart 
from the basic interrupt control registers there are also supplementary registers shown in 
Table III.  

 
 



 Interrupt register Access method 
Masked flags Read 
Unmasked flags Read 
Mask Read/Write 
Vector address Read 
Vector page Write 
Return address Read 

 
 
 
 
 

 

 
Table 3. Interrupt registers 

 
 

4) Timer module: The implemented timer module consists of an incremental 32-bit counter 
which provides up to 1:8 prescaling through a 4-to-1 multiplexer. A multiple-frequency 
divider is used as input to the prescaler that provides various timing periods according to the 
values of the respective controlling bits. The functionality of the timer is controlled by two 
registers. One of them holds the time constant and the other controls other options. The 
timer may provide delays of up to 45 minutes using a 50MHz clock.  

5) UART module: Our UART controller provides an asynchronous full-duplex 
communications path with a variety of data-terminal-equipment (DTE) or data-connecting-
equipment (DCE) devices. It runs at 14400bps and its data frame consists of one start-bit, 
eight data bits, one stop bit and without parity functionality (8N1). A double buffer is also 
implemented to prevent bytes overlapping in transmission process. Its functionality is 
controlled by three registers; two for transmitting or receiving data and one for enabling or 
disabling the transmission or the reception.  

6) Assembler: The assembler developed for our application is a two pass assembler which 
provides the user with listing information (see Table IV) along with a HEX file used to load 
the executable program. During the first pass, the assembler tracks down labels with their 
respective data or address, and afterwards, this performs the second pass using that 
information. It is also batch-capable allowing performance of other tasks while running in the 
background. It should also be noted that it is released under the GNU General Public 
Licence (GPL) [21].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Memory address  Object code  Command  
0x00000400  0x34014000  ori $01, $0, 0x4000  
0x00000404  0x0c000116  jal 0x116  
0x00000408  0x34030038  ori $03, $0, 0x38  
0x0000040c  0xa0230004  sb $03, 0x4($01)  
0x00000410  0x08000104  j 0x104  
0x00000444  0x8024000c  lb $04, 0xc($01)  
0x00000448  0xa0240010  sb $04, 0x10($01)  
0x0000044c  0xa0240008  sb $04, 0x8($01)  
0x00000450  0x0c000116  jal 0x116  
0x00000454  0xd4000000  reti  
0x00000458  0x3c020001  lui $02, 0x1  
0x0000045c  0x34420002  ori $02, $02, 0x2  
0x00000460  0xd0021803  mps $03, $0, $02, 3  
0x00000464  0x34020444  ori $02, $0, 0x444  
0x00000468  0xd0021805  mps $03, $0, $02, 5  
0x0000046c  0x03e00008  jr $ra  

 
Table 4. Assembler listing 

 
7) Supplementary commands: A few extra commands were added to the original MIPS 
R2000 instruction set; apart from mps which is used for interrupt control, reti command was 
added to support return from an interrupt service routine, push, pushd, pop and popd were 
added to implement stack support.  

4. Proposed SOPC In The Undergraduate Curriculum 
 
The students of a computer architecture laboratory are provided with a bootable Linux CD. 
The CD includes an executable binary file of the assembler as well as extensive 
documentation of the development roadmap of the system. Then the user could use the 
assembler to save his work in a USB stick. Several laboratory exercises have been 
developped such as interfacing of LCD displays, 4x4 keyboard matrices and real-time-clock 
(RTC) chips. Our laboratory is currently developing more advanced exercises such as 
driving of dc and stepper motors, interfacing of various sensors (temperature, humidity, 
pressure, weighing, gas etc).  
The students attending the computer architecture laboratory are going through a number of 
exercises that train them in a variety of issues concerning the FPGA implementation of a 
RISC processor, its architecture, peripherals, programming, functionality and interfacing. 
The enthusiasm of the students attending this course motivates our team to enhance the 
present work. Among others, extended UART capabilities could be implemented such as 
programmable baud rate, synchronous communication, parity and data width control. Timer 
facilities could also be extended to support pulse-width-modulation (PWM) and another timer 
could be implemented to extend maximum delay. Moreover, an external memory interface 
could be added to enable the design of memory-consuming projects like digital-signal-
processing (DSP) applications. As far as the software part is concerned, assembler macro 
commands could be introduced and a C compiler could be implemented. Fortunately, due to 
the rapid evolution of FPGA technology, a more advanced development board along with a 
larger FPGA could help us implement almost everything imaginable.  



5. Conclusion 
 

This paper describes the hardware and software implementation of an educational system 
based on a RISC soft processor core that will support the computer architecture laboratory 
of our department. Overall, the approach of using FPGA for the support of our computer 
architecture laboratory proved to be cost-effective; the complexity of assigned essays was 
increased while the cost of the equipment was greatly decreased. Through inexpensive 
equipment we found out that the support of a whole laboratory was possible. Furthermore, 
the time needed for students to finish a report has decreased, and the opportunity for the 
students to extend the functionality of the system could also be provided through a 
dissertation. Finally, we found that our students enjoyed our approach and managed to 
better accomplish the objectives of a computer architecture laboratory.  
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